Multimodal Topic Labelling

نویسندگان

  • Timothy Baldwin
  • Jey Han Lau
  • Nikolaos Aletras
  • Ionut Sorodoc
چکیده

Topics generated by topic models are typically presented as a list of topic terms. Automatic topic labelling is the task of generating a succinct label that summarises the theme or subject of a topic, with the intention of reducing the cognitive load of end-users when interpreting these topics. Traditionally, topic label systems focus on a single label modality, e.g. textual labels. In this work we propose a multimodal approach to topic labelling using a simple feedforward neural network. Given a topic and a candidate image or textual label, our method automatically generates a rating for the label, relative to the topic. Experiments show that this multimodal approach outperforms single-modality topic labelling systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Character Segmentation Algorithm for Farsi Printed Text Using Upper Contour Labelling

In this paper, a modified segmentation algorithm for printed Farsi words is presented. This algorithm is based on a previous work by Azmi that uses the conditional labeling of the upper contour to find the segmentation points. The main objective is to improve the segmentation results for low quality prints. To achieve this, various modifications on local baseline detection, contour labeling an...

متن کامل

Multimodal databases of everyday emotion: facing up to complexity

In everyday life, speech is part of a multichannel system involved in conveying emotion. Understanding how it operates in that context requires suitable data, consisting of multimodal records of emotion drawn from everyday life. This paper reflects the experience of two teams active in collecting and labelling data of this type. It sets out the core reasons for pursuing a multimodal approach, r...

متن کامل

Colour-Based Model Pruning for Efficient ARG Object Recognition

In this paper we address the problem of object recognition from 2D views. A new approach is proposed which combines the recognition systems based on Attribute Relational Graph matching (ARG)[2] and the Multimodal Neighbourhood signature (MNS) [7] method. In the new system we use the MNS method as a pre-matching stage to prune the number of model candidates. The ARG method then identifies the be...

متن کامل

Automatic Labelling of Topics with Neural Embeddings

Topics generated by topic models are typically represented as list of terms. To reduce the cognitive overhead of interpreting these topics for end-users, we propose labelling a topic with a succinct phrase that summarises its theme or idea. Using Wikipedia document titles as label candidates, we compute neural embeddings for documents and words to select the most relevant labels for topics. Com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017